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RESEARCH MEMORANDUM

A FLIGHT-TEST STUDY OF TOTAL-PRESSURE DISTORTION
IN A THICK~LIPPED NOSE INLET

By Rodney C. Wingrove
SUMMARY

Flight tests were conducted on a thick-lipped nose inlet of a
trensonic swept-wing asircraft. No engine operating problems have been
encountered with this airplane and, therefore, 1t is felt that total-
pressure distortions measured for this inlet should provide & basis for
comparison in the evaluation of other inlet types.

The total-pressure recovery and distortion at the compressor face
were measured over the maneuvering range of the airplane for Mach numbers
up to 1.03. The maximum distortion in the point measurements of total
pressure was 8 percent. A maximum radial distortion of 5 percent and s
cilrcumferential distortion of 2.5 percent were measured., Varistion in
angle of attack up to 16° had negligible effect on the total-pressure
recovery and distortion.

INTRODUCTION

Recent investigations (refs. 1 end 2) have indicated that distortion
of the air flow at the face of the compressor of a turbojet engine results
in performance losses and increases the danger of stalling the compressor.
New high-speed aircraft are incorporating complex forms of inlet geometry
which increase the possibility of flow distortion and therefore are more
susceptible to performance losses and compressor stall (see ref. 3).

To establish a basis for comparison in the evaluation of the intermal
flow characteristics on more advanced inltet types, the characteristics of
e sgtisfactory thick-lipped inlet have been investigated and are presented
herein. Since the funection of an inlet is to supply air to the turbojet
engine with & high recovery and a minimum of distortion, this investiga-
tion included both the total-pressure recovery and distortion character-
istics of the inlet., Flight tests were conducted over the Mach number
range from 0.3 to 1.03. The sngle-of-attack range was 1° to 16° at the
lower Mach nunbers but was more 1 ﬁ~§$§3§?ﬁ§gﬁﬁ er Mach nurmbers.
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NOTATTON

The following symbols and subscripts are used in this report. A
genersl discussion of these inlet terms is avallable in reference L,

A area, sq ft
hP pressure altitude, £t
Dt total pressure, 1b/sq ft
My flight Mach number
m mass flow, pAV, sluge/sec
V
EE mass-flow ratio, Egég—g
oo pooAEVoo
Tt total temperature, °R
v alr velocity, ft/sec
W air flow, 1b/sec
E%E corrected air flow, lb/sec
a angle of attack, deg
Py

5] pressure ratio, YT
o} mass density of s&ir, slugs/cu £t

Ty
6 temperature ratio, 519

Subscripts

c circumferential
1 local conditions at the face of the total-pressure rake (fig. 3)
r radial
00 free stream

S Rt L s TFRLS
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1 capture area station of the 'Inlet, station (:), area 550 sq in.
2 minimm ares section of the inlet, station C), ares 350 sq 1n.
3 average conditions at the face of the compressor; station (:),

area 440 sq in.

INSTRUMENTATION AND EQUIPMENT

Test Airplane

The swept-wing fighter airplane used for this investigation is shown
in figure 1. This airplane incorporates the nose-type inlet shown in
figure 2 mated to a JUT7-13 engine. Details and pertinent dimensions of
this inlet are shown in figure 3.

Instrumentation and Tests

The total-pressure measurements were obtained from four rakes, of
five total-pressure tubes each, mounted 14 inches ahead of the compressor
face as indicated in figure 3. Detalled dimensions of these rakes are
presented in figure 4 and a photograph of the probe installation is shown
in Pigure 5. The pressures were recorded by -350 to 1100 pounds per
square foot differential pressure cells located gbout 8 feet from the
rekes and the cells were referenced to the free-stream static-pressure
system. The estimated frequency response of the measuring system indi-
cates no apprecisble phase shift up to spproximately 15 cycles per second.
With this measuring apparatus no total-pressure fluctuation was noted.

Messurements were made under steady-state conditions; that is,
constant throttle settings and steady aircraft conditions. Standard
NACA recording instruments and recording oscillographs syanchronized at
1/10-second intervals were used to record the test data. True Mach num-
ber was obtained from a nose-boom sirspeed system by means of the cali-
bration described in reference 5. Angle of attack was measured by a
Ploating vane located on the nose boom 9 feet ghead of the nose of the
alrplane. Corrections were made to the measured angle of attack for
boom deflection and vane floating angle, The corrected engine air flow
was obtained from the altitude wind-tunnel tests of reference 6 using
the pilot's indicated rpm and the free-sir temperature recorded by a
weather balloon.
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Accuracy

The estimated precision of the measurements based on the least count
of the instruments and other contributing factors i1s:

Msch number . £0.01
Local pressure 15 1b/sq ft
Angle of attack 10, 5°
Corrected air flow +3 percent

RESULTS AND DISCUSSION

Radisl Total-Pressure Profiles

Typical pressures measured by the total-pressure rakes located at
the face of the compressor are shown in figure 6. Contour plots are
presented in figure 7 to illustrate a few selected examples of pressure
variations around half the duct. Regions of lowest pressure recovery
are evident slong the outer wall of the inlet especially at the higher
inlet ailr flows and also near the top and bottom of the duct.

While the flow distortion will be emphasized in analyzlng the data
in this report, it is obvious that an air-induction system is not satis-
factory if a uniform flow field is obtained at the expense of lowered
pressure recovery. Thus flow distortion and recovery characteristics
mist be considered together.

Average Total-Pressure Recovery

The average pressure recovery at the compressor face was obtained
by integrating the total pressure measured by each rake and using the
mean value for each rake to obtain the arithmetic average total pressure
for all the rakes. The pressure recovery i1s presented in figure 8 as a
function of mass-flow ratio for a constant angle of attack near 3°.

Figure 9 presents the average pressure recovery as a function of
sngle of attack. The inlet was found to exhibit little change in charac-
teristics with angle of attack, presumably because of the large leading-
edge radius and the upper overhang. Data from reference T for a circular
inlet having a comparably large leading-edge radius are shown in fig-
ures 9(a) and 9(b). The model tests indicate no pressure recovery change

oA,
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up to 20° angle of attack at a mass-flow ratioc of 1.8; but at a mass-flow
retio of 2.1 there is a loss of pressure recovery between 15° and 20°
angle of attack caused by leading-edge separation. In the flight tests
no leading-edge separation was apparent up to the 16° angle of attack
attained. Over the complete maneuvering range of this airplane for Mach
numbers up to 1.03, no effect of angle of attack on pressure recovery
was noted.

Total-Pressure Distortion

The specific ways in which inlet flow distortion affects joint
inlet-engine operation have not been clearly established. However,
studies, such as references 2, 8, and 9, have been made to define a flow
distortion index that takes account of important engine parameters as
well as inlet flow distortlon parameters; for example,

D' =7%F é!%’ ¢, v, N, r, etc.)
where
D! flow-distortion index
Lp
E:? total-pressure distortion
o} angular extent of circumferential distortion
v axial veloclty at compressor
N engine rpm
r rotor blade size and location

Tt can be seen that only the first two varisbles, Apt/pt and @, are
primarily functions of the inlet shape, and the other variables are
engine functions. o

It is the purpose here to investigate the inlet varisble APt/?t-
The value @ has little significance in this investigation because of
the inherently low circumferential distortion of this type of inlet.
However, where large circumferential distortions occur, such as with side
inlets or ducts with curvature, thils parameter would be more significant.
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The total-pressure distributions shown in figures 6 and 7 indicate
both radial distortion (from the imner wall to the outer wall) and cir-
cumferential distortion (from the top of the inlet to the bottom of the
inlet), as well as a meximum pressure difference from one point to
another, In order ta study these various forms of pressure distribution,
the total-pressure distortion parameter has been calculated in the fol-
lowing three ways. A discussion of these distortion parameters is
available in reference 10,

=P
Ptlmax tzmin

Point totel-pressure distortion

P-bs
Average radisl totsl-pressure §t -Pg
distortion Tmax _Tmin
pts
Average circumferential total- - Py, -Byg
pressure distortion . cmagt Smin
3

where

Pg, average total pressure at station (3)

Py, local total pressure measured by any of the 20 tubes (refer to
L fig. 4)
itr average total pressure at any of the five radial locations
it average total pressure at any of the four circumferential positions

The total-pressure distortion measured durlng this flight investige-
tlon is shown in figure 10 as a function of the corrected inlet air flow.
The total-pressure distortion increased with lncreases 1n air flow and
the maximum distortion levels measured were 8-percent point &istortion,
S5-percent average radial distortion, and 2.5-percent average clrcumfer-
ential distortion.

The trend of incressing total-pressure dlstortion with increasing
inlet air-flow rate has been explained in reference 11. In order to com-
pare the total-pressure distortion of various inlet shapes it is best to
compare the distortion levels with some standard. The standard used o
compare these test results is the total-pressure distortion caused by
the velocity profiles for fully developed turbulent flow in a smooth
pipe. Figure 11 presents the curves of pipe-flow total-pressure distor-
tion from reference 12 compared with these test results. The plpe-flow
curves serve only as a guide for evaluating and comparing test results
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and, because the magnitude of the pipe-flow curves is primarlly a function
of the radius used for comparison, the curves do not imply limits for test
data. A comparison of the test results with the pipe-flow curves indi-
cates that the polnt distortions for the tests were slightly higher while
the average radial distortions were slightly lower than the pipe-flow
values. The average circumferential distortion for pipe flow would be
zero, but for an actual inlet it would depend primarily on duct geometry-
(i.e., bends, obstructions, etc.). The data of figure 11 indicate a very
low level of circumferential distortion for this inlet. The general
trend of the data wilith corrected sir flow is the same as predicted from
the fully developed pipe-flow curves.

The curves for fully developed turbulent flow in figure 11 indicate
an effect of altitude on the distortion profile caused by the change in
pipe friction drag with Reynolds number. Some of the flight test data
In figure 10 show this effect of altitude, but generally the pressure
measuring system is not accurate enough to detect this small difference.

Figure 12 shows the effect of Mach number on the botal-pressure
distortion. The total-pressure distortion tends to lncrease only slightly
with increases in Mach number,

The effect of angle of attack on the total-pressure distortion is
shown in figure 13. The results show the seme trend as indicated by the
average pressure recoverles - that there is a negligible effect of angle
of attack for this inlet up to 16° angle of attack., Over the maximum
maneuvering range of the alrplane for Mach numbers up to 1.03 no
distortion due to angle of attack was noted.

The amount of total-pressure distortion measured during these flight
tests apparently had no effect on the engine operating characteristics.
Over the range of variables encountered no tendency toward compressor
stall or surge was noted.

SUMMARY OF RESULTS

A flight-test study was conducted on a thick-lipped nose inlet that
presented no operating problems such as compressor stall or surge. The
flight-test data obtained during steady-state meneuvers Iindicated:

1. Total-pressure distortions of 8 percent in polnt measurements,
5 percent in average radial measurements, and 2.5 percent in average
circumferentisl measurements were the largest encountered.

2. Angles of attack up to 16° had negligible effect on either the

average pressure recovery or total-pressure distortion.
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3. Incresses 1n Mach number up to 1.0 resulted in small increases

in total-pressure distortion.

Ames Aeronautical Laboratory

National Advisory Committee for Aeronautics
Moffett Field, Calif., Feb. 7, 1958
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Figure 3.~ Inlet detail and area distribution.
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(a) 633 = 97 1b/sec, altitude = 25,000 feet, a = 3°
Figure T.- Total-pressure contours at the compressor face; view looking

aft.
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(b) Mo = 0.30, altitude = 25,000 feet

Figure T.- Concluded.
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(b) Average radial total-pressure distortion.

Figure 10.- Continued.
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Figure 11.- Variation of total-pressure distortion with corrected air
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